MathDB
Putnam 2013 B3

Source:

December 9, 2013
Putnamfunctioninductionlinear algebramatrixcollege contestsPutnam 2013

Problem Statement

Let PP be a nonempty collection of subsets of {1,,n}\{1,\dots,n\} such that:
(i) if S,SP,S,S'\in P, then SSPS\cup S'\in P and SSP,S\cap S'\in P, and (ii) if SPS\in P and S,S\ne\emptyset, then there is a subset TST\subset S such that TPT\in P and TT contains exactly one fewer element than S.S.
Suppose that f:PRf:P\to\mathbb{R} is a function such that f()=0f(\emptyset)=0 and f(SS)=f(S)+f(S)f(SS) for all S,SP.f(S\cup S')= f(S)+f(S')-f(S\cap S')\text{ for all }S,S'\in P. Must there exist real numbers f1,,fnf_1,\dots,f_n such that f(S)=iSfif(S)=\sum_{i\in S}f_i for every SP?S\in P?