MathDB
Identity with Series

Source: 1966 AHSME #36

August 31, 2011
AMC

Problem Statement

Let (1+x+x2)n=a0+a1x+a2x2+...+a2nx2n(1+x+x^2)^n=a_0+a_1x+a_2x^2+...+a_{2n}x^{2n} be an identity in xx. If we lt s=a0+a2+a4+...+a2ns=a_0+a_2+a_4+...+a_{2n}, then ss equals:
(A) 2n(B) 2n+1(C) 3n12(D) 3n2(E) 3n+12\text{(A)}\ 2^n\qquad \text{(B)}\ 2^n+1\qquad \text{(C)}\ \dfrac{3^n-1}{2}\qquad \text{(D)}\ \dfrac{3^n}{2}\qquad \text{(E)}\ \dfrac{3^n+1}{2}