MathDB
Miklós Schweitzer 2002, Problem 9

Source: Miklós Schweitzer 2002

July 30, 2016
college contestsMiklos Schweitzertopologyvectorfunctioninvariant

Problem Statement

Let MM be a connected, compact CC^{\infty}-differentiable manifold, and denote the vector space of smooth real functions on MM by C(M)C^{\infty}(M). Let the subspace VC(M)V\le C^{\infty}(M) be invariant under CC^{\infty}-diffeomorphisms of MM, that is, let fhVf\circ h\in V for every fVf\in V and for every CC^{\infty}-diffeomorphism h ⁣:MMh\colon M\rightarrow M. Prove that if VV is different from the subspaces {0}\{ 0\} and C(M)C^{\infty}(M) then VV only contains the constant functions.