MathDB
Tetrahedron

Source:

February 21, 2006
geometry3D geometrytetrahedrontrigonometryparallelogramtrig identitiesLaw of Cosines

Problem Statement

Let ABCDABCD be a tetrahedron with AB=41AB=41, AC=7AC=7, AD=18AD=18, BC=36BC=36, BD=27BD=27, and CD=13CD=13, as shown in the figure. Let dd be the distance between the midpoints of edges ABAB and CDCD. Find d2d^{2}.
[asy] pair C=origin, D=(4,11), A=(8,-5), B=(16,0); draw(A--B--C--D--B^^D--A--C); draw(midpoint(A--B)--midpoint(C--D), dashed); label("27", B--D, NE); label("41", A--B, SE); label("7", A--C, SW); label("dd", midpoint(A--B)--midpoint(C--D), NE); label("18", (7,8), SW); label("13", (3,9), SW); pair point=(7,0); label("AA", A, dir(point--A)); label("BB", B, dir(point--B)); label("CC", C, dir(point--C)); label("DD", D, dir(point--D));[/asy]