MathDB
Nice identities with sums of powers

Source: Kvant Magazine No. 2 2019 M2546

March 14, 2023
algebraKvant

Problem Statement

Let a,b,ca,b,c be real numbers a+b+c=0a + b +c = 0. Show that
[*] a2+b2+c22a3+b3+c33=a5+b5+c55\displaystyle \frac{a^2 + b^2 + c^2}{2} \cdot \frac{a^3 + b^3 + c^3}{3} = \frac{a^5 + b^5 + c^5}{5}. [*] a2+b2+c22a5+b5+c55=a7+b7+c77\displaystyle \frac{a^2 + b^2 + c^2}{2} \cdot \frac{a^5 + b^5 + c^5}{5} = \frac{a^7 + b^7 + c^7}{7}.
[I]Folklore[/I]