MathDB
Cosine of Angle C

Source:

January 16, 2006
trigonometryvectorUSAMTSgeometrytrig identitiesLaw of Cosines

Problem Statement

In the adjoining figure of a rectangular solid, DHG=45\angle DHG=45^\circ and FHB=60\angle FHB=60^\circ. Find the cosine of BHD\angle BHD.
[asy] size(200); import three;defaultpen(linewidth(0.7)+fontsize(10)); currentprojection=orthographic(1/3+1/10,1-1/10,1/3); real r=sqrt(3); triple A=(0,0,r), B=(0,r,r), C=(1,r,r), D=(1,0,r), E=O, F=(0,r,0), G=(1,0,0), H=(1,r,0); draw(D--G--H--D--A--B--C--D--B--F--H--B^^C--H); draw(A--E^^G--E^^F--E, linetype("4 4")); label("AA", A, N); label("BB", B, dir(0)); label("CC", C, N); label("DD", D, W); label("EE", E, NW); label("FF", F, S); label("GG", G, W); label("HH", H, S); triple H45=(1,r-0.15,0.1), H60=(1-0.05, r, 0.07); label("4545^\circ", H45, dir(125), fontsize(8)); label("6060^\circ", H60, dir(25), fontsize(8));[/asy]
(A) 36(B) 26(C) 63(D) 64(E) 624\textbf {(A) } \frac{\sqrt{3}}{6} \qquad \textbf {(B) } \frac{\sqrt{2}}{6} \qquad \textbf {(C) } \frac{\sqrt{6}}{3} \qquad \textbf {(D) } \frac{\sqrt{6}}{4} \qquad \textbf {(E) } \frac{\sqrt{6}-\sqrt{2}}{4}