MathDB
IMO LongList 1987 - prove the existence of limit

Source:

September 6, 2010
trigonometrylimitalgebra proposedalgebra

Problem Statement

Given two sequences of positive numbers {ak}\{a_k\} and {bk} (kN)\{b_k\} \ (k \in \mathbb N) such that:
(i) ak<bk,a_k < b_k,
(ii) cosakx+cosbkx1k\cos a_kx + \cos b_kx \geq -\frac 1k for all kNk \in \mathbb N and xR,x \in \mathbb R,
prove the existence of limkakbk\lim_{k \to \infty} \frac{a_k}{b_k} and find this limit.