MathDB
Geometric Inequality

Source: Turkey JBMO Team Selection Test Problem 5

May 30, 2012
inequalitiesgeometryinradiusCauchy Inequalitygeometry proposed

Problem Statement

Let a,b,ca, b, c be the side-lengths of a triangle, rr be the inradius and ra,rb,rcr_a, r_b, r_c be the corresponding exradius. Show that a+b+ca2+b2+c22ra2+rb2+rc2ra+rb+rc3r \frac{a+b+c}{\sqrt{a^2+b^2+c^2}} \leq 2 \cdot \frac{\sqrt{{r_a}^2+{r_b}^2+{r_c}^2}}{r_a+r_b+r_c-3r}