MathDB
JBMO Shortlist 2019 A6

Source:

September 12, 2020
algebrainequalitiesJBMO

Problem Statement

Let a,b,ca, b, c be positive real numbers. Prove the inequality (a2+ac+c2)(1a+b+c+1a+c)+b2(1b+c+1a+b)>a+b+c(a^2+ac+c^2) \left( \frac{1}{a+b+c}+\frac{1}{a+c} \right)+b^2 \left( \frac{1}{b+c}+\frac{1}{a+b} \right)>a+b+c.
Proposed by Tajikistan