MathDB
Gunga P15

Source:

October 16, 2021
MOAA 2021Gunga

Problem Statement

Let a,b,c,da,b,c,d be the four roots of the polynomial x4+3x3x2+x2.x^4+3x^3-x^2+x-2. Given that 1a+1b+1c+1d=12\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{1}{2} and 1a2+1b2+1c2+1d2=34\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=-\frac{3}{4}, the value of 1a3+1b3+1c3+1d3\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3} can be expressed as mn\frac{m}{n} for relatively prime positive integers mm and nn. Compute m+nm+n.
Proposed by Nathan Xiong