MathDB
permutation of N, limit is 1

Source: Putnam 1982 A6

September 24, 2021
limitsreal analysiscollege contestsPutnam

Problem Statement

Let σ\sigma be a bijection on the positive integers. Let x1,x2,x3,x_1,x_2,x_3,\ldots be a sequence of real numbers with the following three properties:
(i)(\text i) xn|x_n| is a strictly decreasing function of nn; (ii)(\text{ii}) σ(n)nxn0|\sigma(n)-n|\cdot|x_n|\to0 as nn\to\infty; (iii)(\text{iii}) limnk=1nxk=1\lim_{n\to\infty}\sum_{k=1}^nx_k=1.
Prove or disprove that these conditions imply that limnk=1nxσ(k)=1.\lim_{n\to\infty}\sum_{k=1}^nx_{\sigma(k)}=1.