MathDB
Ratio of Segments in a Triangle

Source:

June 13, 2009
ratio

Problem Statement

The sides of a right triangle are a a and b b and the hypotenuse is c c. A perpendicular from the vertex divides c c into segments r r and s s, adjacent respectively to a a and b b. If a : b \equal{} 1 : 3, then the ratio of r r to s s is: <spanclass=latexbold>(A)</span> 1:3<spanclass=latexbold>(B)</span> 1:9<spanclass=latexbold>(C)</span> 1:10<spanclass=latexbold>(D)</span> 3:10<spanclass=latexbold>(E)</span> 1:10 <span class='latex-bold'>(A)</span>\ 1 : 3\qquad <span class='latex-bold'>(B)</span>\ 1 : 9\qquad <span class='latex-bold'>(C)</span>\ 1 : 10\qquad <span class='latex-bold'>(D)</span>\ 3 : 10\qquad <span class='latex-bold'>(E)</span>\ 1 : \sqrt{10}