MathDB
Diagonal Sum in Cyclic Pentagon

Source: 2014 AMC 12B #24

February 20, 2014
geometrytrapezoidAsymptotenumber theoryrelatively primeAMC

Problem Statement

Let ABCDEABCDE be a pentagon inscribed in a circle such that AB=CD=3AB=CD=3, BC=DE=10BC=DE=10, and AE=14AE=14. The sum of the lengths of all diagonals of ABCDEABCDE is equal to mn\frac{m}{n}, where mm and nn are relatively prime positive integers. What is m+nm+n? <spanclass=latexbold>(A)</span>129<spanclass=latexbold>(B)</span>247<spanclass=latexbold>(C)</span>353<spanclass=latexbold>(D)</span>391<spanclass=latexbold>(E)</span>421<span class='latex-bold'>(A) </span>129\qquad <span class='latex-bold'>(B) </span>247\qquad <span class='latex-bold'>(C) </span>353\qquad <span class='latex-bold'>(D) </span>391\qquad <span class='latex-bold'>(E) </span>421\qquad