MathDB
1/ a^n + 1/ b^n+ 1/c ^n =1/ (a^n + b^n + c^n)

Source: Polish MO Finals 1956 p2

August 29, 2024
algebra

Problem Statement

Prove that if 1a+1b+1c=1a+b+c \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a + b + c} and n n is any odd natural number, then 1an+1bn+1cn=1an+bn+cn \frac{1}{a^n} + \frac{1}{b^n} + \frac{1}{c^n} =\frac{1}{a^n + b^n + c^n}