MathDB
Prove that there exists a function [Iran Second Round 1994]

Source:

November 26, 2010
functionpigeonhole principlemodular arithmeticnumber theory proposednumber theory

Problem Statement

Let a1a2a3an\overline{a_1a_2a_3\ldots a_n} be the representation of a nn-digits number in base 10.10. Prove that there exists a one-to-one function like f:{0,1,2,3,,9}{0,1,2,3,,9}f : \{0, 1, 2, 3, \ldots, 9\} \to \{0, 1, 2, 3, \ldots, 9\} such that f(a1)0f(a_1) \neq 0 and the number f(a1)f(a2)f(a3)f(an)\overline{ f(a_1)f(a_2)f(a_3) \ldots f(a_n) } is divisible by 3.3.