MathDB
Remainder equation

Source: Problem #4 2016 10A and 2016 12A #3

February 3, 2016
floor function2016 AMC 10A

Problem Statement

The remainder can be defined for all real numbers xx and yy with y0y \neq 0 by rem(x,y)=xyxy\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor where xy\left \lfloor \tfrac{x}{y} \right \rfloor denotes the greatest integer less than or equal to xy\tfrac{x}{y}. What is the value of rem(38,25)\text{rem} (\tfrac{3}{8}, -\tfrac{2}{5} )?
<spanclass=latexbold>(A)</span>38<spanclass=latexbold>(B)</span>140<spanclass=latexbold>(C)</span>0<spanclass=latexbold>(D)</span>38<spanclass=latexbold>(E)</span>3140<span class='latex-bold'>(A) </span> -\frac{3}{8} \qquad <span class='latex-bold'>(B) </span> -\frac{1}{40} \qquad <span class='latex-bold'>(C) </span> 0 \qquad <span class='latex-bold'>(D) </span> \frac{3}{8} \qquad <span class='latex-bold'>(E) </span> \frac{31}{40}