MathDB
\frac{a+z}{a+x}\cdot x+\frac{a+x}{a+y}\cdot y+\frac{a+y}{a+z}\cdot z \leq x+y+z

Source: Moldova TST 1998

August 7, 2023
inequalities

Problem Statement

Show that for any positive real numbers a,x,y,za, x, y, z the following inequalities are true a+za+xx+a+xa+yy+a+ya+zzx+y+za+ya+zx+a+za+xy+a+xa+yz.\frac{a+z}{a+x}\cdot x+\frac{a+x}{a+y}\cdot y+\frac{a+y}{a+z}\cdot z \leq x+y+z \leq \frac{a+y}{a+z}\cdot x+\frac{a+z}{a+x}\cdot y+\frac{a+x}{a+y}\cdot z.