MathDB
Isosceles Triangle

Source:

January 5, 2007
geometryperimetertrigonometryquadraticstrig identitiesLaw of Sinesangle bisector

Problem Statement

Triangle ABCABC is isosceles, with AB=ACAB=AC and altitude AM=11.AM=11. Suppose that there is a point DD on AM\overline{AM} with AD=10AD=10 and BDC=3BAC.\angle BDC=3\angle BAC. Then the perimeter of ABC\triangle ABC may be written in the form a+b,a+\sqrt{b}, where aa and bb are integers. Find a+b.a+b.
[asy] import graph; size(7cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.55,xmax=7.95,ymin=-4.41,ymax=5.3; draw((1,3)--(0,0)); draw((0,0)--(2,0)); draw((2,0)--(1,3)); draw((1,3)--(1,0)); draw((1,0.7)--(0,0)); draw((1,0.7)--(2,0)); label("1111",(0.75,1.63),SE*lsf); dot((1,3),ds); label("AA",(0.96,3.14),NE*lsf); dot((0,0),ds); label("BB",(-0.15,-0.18),NE*lsf); dot((2,0),ds); label("CC",(2.06,-0.18),NE*lsf); dot((1,0),ds); label("MM",(0.97,-0.27),NE*lsf); dot((1,0.7),ds); label("DD",(1.05,0.77),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]