MathDB
oh!! Integral

Source: Romania 1998

August 23, 2005
calculusintegrationfunctionreal analysisreal analysis unsolved

Problem Statement

Suppose that a,bR+a,b\in\mathbb{R}^+ which a+b<1a+b<1 and f:[0,+)[0,+)f:[0,+\infty) \rightarrow [0,+\infty) be the increasing function s.t. x0,0xf(t)dt=0axf(t)dt+0bxf(t)dt\forall x\geq 0 ,\int _0^x f(t)dt=\int _0^{ax} f(t)dt+\int _0^{bx} f(t)dt. Prove that x0,f(x)=0\forall x\geq 0 , f(x)=0