National and Regional Contests USA Contests USA - College-Hosted Events UMD Math Competition 2023 UMD Math Competition Part I #6 Let and what Problem Statement Let
A = log ( 1 ) + log 2 + log ( 3 ) + ⋯ + log ( 2023 )
A = \log (1) + \log 2 + \log(3) + \cdots + \log(2023)
A = log ( 1 ) + log 2 + log ( 3 ) + ⋯ + log ( 2023 )
and
B = log ( 1 / 1 ) + log ( 1 / 2 ) + log ( 1 / 3 ) + ⋯ + log ( 1 / 2023 ) .
B = \log(1/1) + \log(1/2) + \log(1/3) + \cdots + \log(1/2023).
B = log ( 1/1 ) + log ( 1/2 ) + log ( 1/3 ) + ⋯ + log ( 1/2023 ) .
What is the value of A + B ? A + B\ ? A + B ?
( ( ( logs are logs base 10 ) 10) 10 )
a . 0 b . 1 c . − log ( 2023 ! ) d . log ( 2023 ! ) e . − 2023
\mathrm a. ~ 0\qquad \mathrm b.~1\qquad \mathrm c. ~{-\log(2023!)} \qquad \mathrm d. ~\log(2023!) \qquad \mathrm e. ~{-2023}
a . 0 b . 1 c . − log ( 2023 !) d . log ( 2023 !) e . − 2023