MathDB
Let and what

Source: UMD 2023 I #6

October 27, 2023
UMDalgebra

Problem Statement

Let A=log(1)+log2+log(3)++log(2023) A = \log (1) + \log 2 + \log(3) + \cdots + \log(2023) and B=log(1/1)+log(1/2)+log(1/3)++log(1/2023). B = \log(1/1) + \log(1/2) + \log(1/3) + \cdots + \log(1/2023). What is the value of A+B ?A + B\ ? ((logs are logs base 10)10) a. 0b. 1c. log(2023!)d. log(2023!)e. 2023 \mathrm a. ~ 0\qquad \mathrm b.~1\qquad \mathrm c. ~{-\log(2023!)} \qquad \mathrm d. ~\log(2023!) \qquad \mathrm e. ~{-2023}