MathDB
VMO 2021, P1

Source:

December 25, 2020
algebra

Problem Statement

Let (xn)(x_n) define by x1(0;12)x_1\in \left(0;\dfrac{1}{2}\right) and xn+1=3xn22nxn3x_{n+1}=3x_n^2-2nx_n^3 for all n1n\ge 1. a) Prove that (xn)(x_n) convergence to 00.
b) For each n1n\ge 1, let yn=x1+2x2++nxny_n=x_1+2x_2+\cdots+n x_n. Prove that (yn)(y_n) has a limit.