Romanian District Olympiad
Source: Grade XI
March 17, 2010
functionalgebra unsolvedalgebra
Problem Statement
Prove that any continuos function with
f(x)\equal{}\left\{ \begin{aligned} a_1x\plus{}b_1\ ,\ \text{for } x\le 1 \\
a_2x\plus{}b_2\ ,\ \text{for } x>1 \end{aligned} \right.
where , can be written as:
f(x)\equal{}m_1x\plus{}n_1\plus{}\epsilon|m_2x\plus{}n_2|\ ,\ \text{for } x\in \mathbb{R}
where and \epsilon\in \{\minus{}1,\plus{}1\}.