MathDB
Problems
Contests
National and Regional Contests
Bulgaria Contests
Bulgaria National Olympiad
2023 Bulgaria National Olympiad
5
n-variable modular inequality
n-variable modular inequality
Source: Bulgaria National Olympiad 2023 Problem 5
April 9, 2023
algebra
n-variable inequality
inequalities
Problem Statement
For every positive integer
n
n
n
determine the least possible value of the expression
∣
x
1
∣
+
∣
x
1
−
x
2
∣
+
∣
x
1
+
x
2
−
x
3
∣
+
⋯
+
∣
x
1
+
x
2
+
⋯
+
x
n
−
1
−
x
n
∣
|x_{1}|+|x_{1}-x_{2}|+|x_{1}+x_{2}-x_{3}|+\dots +|x_{1}+x_{2}+\dots +x_{n-1}-x_{n}|
∣
x
1
∣
+
∣
x
1
−
x
2
∣
+
∣
x
1
+
x
2
−
x
3
∣
+
⋯
+
∣
x
1
+
x
2
+
⋯
+
x
n
−
1
−
x
n
∣
given that
x
1
,
x
2
,
…
,
x
n
x_{1}, x_{2}, \dots , x_{n}
x
1
,
x
2
,
…
,
x
n
are real numbers satisfying
∣
x
1
∣
+
∣
x
2
∣
+
⋯
+
∣
x
n
∣
=
1
|x_{1}|+|x_{2}|+\dots+|x_{n}| = 1
∣
x
1
∣
+
∣
x
2
∣
+
⋯
+
∣
x
n
∣
=
1
.
Back to Problems
View on AoPS