MathDB
Miklos Schweitzer 1972_10

Source:

November 5, 2008
functiontopologyadvanced fieldsadvanced fields unsolved

Problem Statement

Let T1 \mathcal{T}_1 and T2 \mathcal{T}_2 be second-countable topologies on the set E E. We would like to find a real function σ \sigma defined on E×E E \times E such that 0 \leq \sigma(x,y) <\plus{}\infty, \;\sigma(x,x)\equal{}0 \ , \sigma(x,z) \leq \sigma(x,y)\plus{}\sigma(y,z) \;(x,y,z \in E) \ , and, for any pE p \in E, the sets V_1(p,\varepsilon)\equal{}\{ x : \;\sigma(x,p)< \varepsilon \ \} \;(\varepsilon >0) form a neighborhood base of p p with respect to T1 \mathcal{T}_1, and the sets V_2(p,\varepsilon)\equal{}\{ x : \;\sigma(p,x)< \varepsilon \ \} \;(\varepsilon >0) form a neighborhood base of p p with respect to T2 \mathcal{T}_2. Prove that such a function σ \sigma exists if and only if, for any pE p \in E and Ti \mathcal{T}_i-open set G \ni p \;(i\equal{}1,2) , there exist a Ti \mathcal{T}_i-open set G G' and a \mathcal{T}_{3\minus{}i}-closed set F F with pGFG. p \in G' \subset F \subset G. A. Csaszar