MathDB
Problems
Contests
International Contests
Nordic
2003 Nordic
2
x^3 + y^3 + z^3 − 3xyz = 2003
x^3 + y^3 + z^3 − 3xyz = 2003
Source: Nordic Mathematical Contest 2003 #2
September 24, 2017
number theory
cubic equation
integer equation
Problem Statement
Find all triples of integers
(
x
,
y
,
z
)
{(x, y, z)}
(
x
,
y
,
z
)
satisfying
x
3
+
y
3
+
z
3
ā
3
x
y
z
=
2003
{x^3 + y^3 + z^3 - 3xyz = 2003}
x
3
+
y
3
+
z
3
ā
3
x
yz
=
2003
Back to Problems
View on AoPS