MathDB
Induction with divisibility

Source: Moldova TST 2020

March 8, 2020
Divisibilityalgebra

Problem Statement

Let nn, (n3)(n \geq3) be a positive integer and the polynomial f(x)=(1+x)(1+2x)(1+3x)...(1+nx)f(x)=(1+x) \cdot (1+2x) \cdot (1+3x) \cdot ... \cdot (1+nx) =a0+a1x+a2x2+a3x3+...+anxn= a_0+a_1 \cdot x+a_2 \cdot x^2+a_3 \cdot x^3+...+a_n \cdot x^n. Show that the number a3a_3 divides the number k=Cn+12(2Cn2Cn+123a2).k=C^2_{n+1} \cdot (2 \cdot C^2_n \cdot C^2_{n+1}-3 \cdot a_2).