MathDB
Macedonia National Olympiad 2017 Problem 5

Source: Macedonia National Olympiad 2017

April 8, 2017
functionalgebra

Problem Statement

Let n>1Nn>1 \in \mathbb{N} and a1,a2,...,ana_1, a_2, ..., a_n be a sequence of nn natural integers. Let:
b1=[a2++ann1],bi=[a1++ai1+ai+1++ann1],bn=[a1++an1n1]b_1 = \left[\frac{a_2 + \cdots + a_n}{n-1}\right], b_i = \left[\frac{a_1 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n}{n-1}\right], b_n = \left[\frac{a_1 + \cdots + a_{n-1}}{n-1}\right]
Define a mapping ff by f(a1,a2,an)=(b1,b2,,bn)f(a_1,a_2, \cdots a_n) = (b_1,b_2,\cdots,b_n).
a) Let g:NNg: \mathbb{N} \to \mathbb{N} be a function such that g(1)g(1) is the number of different elements in f(a1,a2,an)f(a_1,a_2, \cdots a_n) and g(m)g(m) is the number od different elements in fm(a1,a2,an)=f(fm1(a1,a2,an));m>1f^m(a_1,a_2, \cdots a_n) = f(f^{m-1}(a_1,a_2, \cdots a_n)); m>1. Prove that k0N\exists k_0 \in \mathbb{N} s.t. for mk0m \ge k_0 the function g(m)g(m) is periodic.
b) Prove that m=1kg(m)m(m+1)<C\sum_{m=1}^k \frac{g(m)}{m(m+1)} < C for all kNk \in \mathbb{N}, where CC is a function that doesn't depend on kk.