Let S be the set of all pairs (a,b) of integers satisfying 0≤a,b≤2014. For any pairs s1=(a1,b1),s2=(a2,b2)∈S, define s1+s2=((a1+a2)2015,(b1+b2)2015) and s1×s2=((a1a2+2b1b2)2015,(a1b2+a2b1)2015), where n2015 denotes the remainder when an integer n is divided by 2015.Compute the number of functions f:S→S satisfying f(s1+s2)=f(s1)+f(s2) and f(s1×s2)=f(s1)×f(s2) for all s1,s2∈S. Proposed by Yang Liu