MathDB
Bosnia and Herzegovina TST 1996 Day 1 Problem 1

Source: Bosnia and Herzegovina Team Selection Test 1996

September 20, 2018
inequalitiesalgebraparameter

Problem Statement

a)a) Let aa, bb and cc be positive real numbers. Prove that for all positive integers mm holds: (a+b)m+(b+c)m+(c+a)m2m(am+bm+cm)(a+b)^m+(b+c)^m+(c+a)^m \leq 2^m(a^m+b^m+c^m) b)b) Does inequality a)a) holds for 1)1) arbitrary real numbers aa, bb and cc 2)2) any integer mm