MathDB
Integer sequences

Source: Korea National 2013 #7

November 10, 2013
Vietaalgebra

Problem Statement

For positive integer kk, define integer sequence {bn},{cn}\{ b_n \}, \{ c_n \} as follows: b1=c1=1 b_1 = c_1 = 1 b2n=kb2n1+(k1)c2n1,c2n=b2n1+c2n1 b_{2n} = kb_{2n-1} + (k-1)c_{2n-1}, c_{2n} = b_{2n-1} + c_{2n-1} b2n+1=b2n+(k1)c2n,c2n+1=b2n+kc2n b_{2n+1} = b_{2n} + (k-1)c_{2n}, c_{2n+1} = b_{2n} + kc_{2n} Let ak=b2014a_k = b_{2014} . Find the value of k=1100(akak21)12014 \sum_{k=1}^{100} { (a_k - \sqrt{{a_k}^2-1} )^{ \frac{1}{2014}} }