MathDB
gcd = sum =\lambda_i a_i

Source: 1987 Greece MO Grade XII p1

September 6, 2024
group theoryabstract algebragreatest common divisornumber theory

Problem Statement

a) Prove that every sub-group (A,+)(A,+) of group (Z,+)(\mathbb{Z},+) is in the form A=nZA=n \cdot \mathbb{Z} for some nZn \in \mathbb{Z} where nZ={nx/xZ}n \cdot \mathbb{Z}=\{n \cdot x/x\in\mathbb{Z}\}.
b) Using problem (a) , prove that the greatest common divisor dd of non zero integers a1,a2,...,ana_1, a_2,... ,a_n is given by relation d=λ1a1+λ2a2+...λnand=\lambda_1a_1+\lambda_2 a_2+...\lambda_n a_n with λiZ,i=1,2,...,n\lambda_i\in\mathbb{Z}, \,\, i=1,2,...,n