MathDB
exists triangle with sides \sqrt{a^2-a + 1}, \sqrt{a^2+a + 1}, \sqrt{4a^2 + 3}

Source: 2010 Saudi Arabia Pre-TST 4.2

December 28, 2021
triangle inequalitygeometryareas

Problem Statement

Let aa be a real number. 1) Prove that there is a triangle with side lengths a2a+1\sqrt{a^2-a + 1}, a2+a+1\sqrt{a^2+a + 1}, and 4a2+3\sqrt{4a^2 + 3}. 2) Prove that the area of this triangle does not depend on aa.