MathDB
BC\AB =BB' /BC+ BC/BB', planes angles, cube related (2018 Romanian NMO VIII P4)

Source:

June 3, 2020
geometry3D geometrycubeanglesparallelequal segments

Problem Statement

In the rectangular parallelepiped ABCDABCDABCDA'B'C'D' we denote by MM the center of the face ABBAABB'A'. We denote by M1M_1 and M2M_2 the projections of MM on the lines BCB'C and ADAD' respectively. Prove that:
a) MM1=MM2MM_1 = MM_2
b) if (MM1M2)(ABC)=d(MM_1M_2) \cap (ABC) = d, then dADd \parallel AD;
c) (MM1M2),(ABC)=45oBCAB=BBBC+BCBB\angle (MM_1M_2), (A B C)= 45^ o \Leftrightarrow \frac{BC}{AB}=\frac{BB'}{BC}+\frac{BC}{BB'}.