MathDB
Problems
Contests
International Contests
IMO Longlists
1990 IMO Longlists
56
Find the sums - ILL 1990 MOR1
Find the sums - ILL 1990 MOR1
Source:
September 18, 2010
limit
algebra unsolved
algebra
Problem Statement
For positive integers
n
,
p
n, p
n
,
p
with
n
≥
p
n \geq p
n
≥
p
, define real number
K
n
,
p
K_{n, p}
K
n
,
p
as follows:
K
n
,
0
=
1
n
+
1
K_{n, 0} = \frac{1}{n+1}
K
n
,
0
=
n
+
1
1
and
K
n
,
p
=
K
n
−
1
,
p
−
1
−
K
n
,
p
−
1
K_{n, p} = K_{n-1, p-1} -K_{n, p-1}
K
n
,
p
=
K
n
−
1
,
p
−
1
−
K
n
,
p
−
1
for
1
≤
p
≤
n
.
1 \leq p \leq n.
1
≤
p
≤
n
.
(i) Define
S
n
=
∑
p
=
0
n
K
n
,
p
,
n
=
0
,
1
,
2
,
…
S_n = \sum_{p=0}^n K_{n,p} , \ n = 0, 1, 2, \ldots
S
n
=
∑
p
=
0
n
K
n
,
p
,
n
=
0
,
1
,
2
,
…
. Find
lim
n
→
∞
S
n
.
\lim_{n \to \infty} S_n.
lim
n
→
∞
S
n
.
(ii) Find
T
n
=
∑
p
=
0
n
(
−
1
)
p
K
n
,
p
,
n
=
0
,
1
,
2
,
…
T_n = \sum_{p=0}^n (-1)^p K_{n,p} , \ n = 0, 1, 2, \ldots
T
n
=
∑
p
=
0
n
(
−
1
)
p
K
n
,
p
,
n
=
0
,
1
,
2
,
…
.
Back to Problems
View on AoPS