MathDB
Find the sums - ILL 1990 MOR1

Source:

September 18, 2010
limitalgebra unsolvedalgebra

Problem Statement

For positive integers n,pn, p with npn \geq p, define real number Kn,pK_{n, p} as follows: Kn,0=1n+1K_{n, 0} = \frac{1}{n+1} and Kn,p=Kn1,p1Kn,p1K_{n, p} = K_{n-1, p-1} -K_{n, p-1} for 1pn.1 \leq p \leq n.
(i) Define Sn=p=0nKn,p, n=0,1,2,S_n = \sum_{p=0}^n K_{n,p} , \ n = 0, 1, 2, \ldots . Find limnSn.\lim_{n \to \infty} S_n.
(ii) Find Tn=p=0n(1)pKn,p, n=0,1,2,T_n = \sum_{p=0}^n (-1)^p K_{n,p} , \ n = 0, 1, 2, \ldots.