MathDB
IMC 1996 Problem 12

Source: IMC 1996

March 4, 2021
inequalitiesreal analysis

Problem Statement

i) Prove that for every sequence (an)nN(a_{n})_{n\in \mathbb{N}}, such that an>0a_{n}>0 for all nNn \in \mathbb{N} and n=1an<\sum_{n=1}^{\infty}a_{n}<\infty, we have n=1(a1a2an)1n<en=1an.\sum_{n=1}^{\infty}(a_{1}a_{2} \cdots a_{n})^{\frac{1}{n}}< e\sum_{n=1}^{\infty}a_{n}. ii) Prove that for every ϵ>0\epsilon>0 there exists a sequence (bn)nN(b_{n})_{n\in \mathbb{N}} such that bn>0b_{n}>0 for all nNn \in \mathbb{N} and n=1bn<\sum_{n=1}^{\infty}b_{n}<\infty and n=1(b1b2bn)1n>(eϵ)n=1bn.\sum_{n=1}^{\infty}(b_{1}b_{2} \cdots b_{n})^{\frac{1}{n}}> (e-\epsilon)\sum_{n=1}^{\infty}b_{n}.