MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
JHMT problems
2022 JHMT HS
8
2048th Roots of Unity
2048th Roots of Unity
Source:
August 8, 2024
algebra
complex numbers
2022
Problem Statement
Let
ω
\omega
ω
be a complex number satisfying
ω
2048
=
1
\omega^{2048} = 1
ω
2048
=
1
and
ω
1024
≠
1
\omega^{1024} \neq 1
ω
1024
=
1
. Find the unique ordered pair of nonnegative integers
(
p
,
q
)
(p, q)
(
p
,
q
)
satisfying
2
p
−
2
q
=
∑
0
≤
m
<
n
≤
2047
(
ω
m
+
ω
n
)
2048
.
2^p - 2^q = \sum_{0 \leq m < n \leq 2047} (\omega^m + \omega^n)^{2048}.
2
p
−
2
q
=
0
≤
m
<
n
≤
2047
∑
(
ω
m
+
ω
n
)
2048
.
Back to Problems
View on AoPS