MathDB
The orthocenter

Source: UMD 2023 I #13

October 24, 2023
UMDgeometry

Problem Statement

The orthocenter of triangle ABCABC lies on its circumcircle. One of the angles of ABCABC must equal: (The orthocenter of a triangle is the point where all three altitudes intersect.) a. 30b. 60c. 90d. 120e. It cannot be deduced from the given information. \mathrm a. ~ 30^\circ\qquad \mathrm b.~60^\circ\qquad \mathrm c. ~90^\circ \qquad \mathrm d. ~120^\circ \qquad \mathrm e. ~\text{It cannot be deduced from the given information.}