MathDB
exists f:R \to R, f(x)+f(2x)+...+f(nx) = 0 for all x \in R, f(x) = 0 iff x=0

Source: IMAR 2011 p3

September 27, 2018
functionalgebrafunctional equation

Problem Statement

Given an integer number n2n \ge 2, show that there exists a function f:RRf : R \to R such that f(x)+f(2x)+...+f(nx)=0f(x) + f(2x) + ...+ f(nx) = 0, for all xRx \in R, and f(x)=0f(x) = 0 if and only if x=0x = 0.