MathDB
Cardinality of a special set of n-vectors

Source: Romania TST 5 2009, Problem 3

May 5, 2012
vectorcombinatorics proposedcombinatorics

Problem Statement

Given two integers n1n\geq 1 and q2q\geq 2, let A={(a1,,an):ai{0,,q1},i=1,,n}A=\{(a_1,\ldots ,a_n):a_i\in\{0,\ldots ,q-1\}, i=1,\ldots ,n\}. If a=(a1,,an)a=(a_1,\ldots ,a_n) and b=(b1,,bn)b=(b_1,\ldots ,b_n) are two elements of AA, let δ(a,b)=#{i:aibi}\delta(a,b)=\#\{i:a_i\neq b_i\}. Let further tt be a non-negative integer and BB a non-empty subset of AA such that δ(a,b)2t+1\delta(a,b)\geq 2t+1, whenever aa and bb are distinct elements of BB. Prove that the two statements below are equivalent: a) For any aAa\in A, there is a unique bBb\in B, such that δ(a,b)t\delta (a,b)\leq t; b) Bk=0t(nk)(q1)k=qn\displaystyle|B|\cdot \sum_{k=0}^t \binom{n}{k}(q-1)^k=q^n