MathDB
IMC 2003 Problem 12

Source: IMC 2003 Day 2 Problem 6

November 2, 2020
limitConvergencereal analysis

Problem Statement

Let (an)(a_{n}) be the sequence defined by a0=1,an+1=k=0naknk+2a_{0}=1,a_{n+1}=\sum_{k=0}^{n}\dfrac{a_k}{n-k+2}. Find the limit limnk=0nak2k,\lim_{n \rightarrow \infty} \sum_{k=0}^{n}\dfrac{a_{k}}{2^{k}}, if it exists.