MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 8
1994 AMC 8
20
1994 AJHSME Problem 20
1994 AJHSME Problem 20
Source:
July 9, 2011
Problem Statement
Let
W
,
X
,
Y
W,X,Y
W
,
X
,
Y
and
Z
Z
Z
be four different digits selected from the set
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
}
.
\{ 1,2,3,4,5,6,7,8,9\}.
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
}
.
If the sum
W
X
+
Y
Z
\dfrac{W}{X} + \dfrac{Y}{Z}
X
W
+
Z
Y
is to be as small as possible, then
W
X
+
Y
Z
\dfrac{W}{X} + \dfrac{Y}{Z}
X
W
+
Z
Y
must equal
(A)
2
17
(B)
3
17
(C)
17
72
(D)
25
72
(E)
13
36
\text{(A)}\ \dfrac{2}{17} \qquad \text{(B)}\ \dfrac{3}{17} \qquad \text{(C)}\ \dfrac{17}{72} \qquad \text{(D)}\ \dfrac{25}{72} \qquad \text{(E)}\ \dfrac{13}{36}
(A)
17
2
(B)
17
3
(C)
72
17
(D)
72
25
(E)
36
13
Back to Problems
View on AoPS