MathDB
1994 AJHSME Problem 20

Source:

July 9, 2011

Problem Statement

Let W,X,YW,X,Y and ZZ be four different digits selected from the set
{1,2,3,4,5,6,7,8,9}.\{ 1,2,3,4,5,6,7,8,9\}.
If the sum WX+YZ\dfrac{W}{X} + \dfrac{Y}{Z} is to be as small as possible, then WX+YZ\dfrac{W}{X} + \dfrac{Y}{Z} must equal
(A) 217(B) 317(C) 1772(D) 2572(E) 1336\text{(A)}\ \dfrac{2}{17} \qquad \text{(B)}\ \dfrac{3}{17} \qquad \text{(C)}\ \dfrac{17}{72} \qquad \text{(D)}\ \dfrac{25}{72} \qquad \text{(E)}\ \dfrac{13}{36}