MathDB
2016 Guts #23

Source:

December 24, 2016

Problem Statement

Let t=2016t = 2016 and p=ln2p = \ln 2. Evaluate in closed form the sum k=1(1n=0k1ettnn!)(1p)k1p. \sum_{k=1}^{\infty} \left( 1-\sum_{n=0}^{k-1}\frac{e^{-t}t^{n}}{n!} \right) \left(1-p\right)^{k-1}p.