MathDB
Moldova JTST 2019 P4

Source:

April 19, 2019
algebrainequalities

Problem Statement

Let n(n2)n(n\geq2) be a natural number and a1,a2,...,ana_1,a_2,...,a_n natural positive real numbers. Determine the least possible value of the expression En=(1+a1)(a1+a2)(a2+a3)...(an1+an)(an+3n+1)a1a2a3...anE_n=\frac{(1+a_1)\cdot(a_1+a_2)\cdot(a_2+a_3)\cdot...\cdot(a_{n-1}+a_n)\cdot(a_n+3^{n+1})} {a_1\cdot a_2\cdot a_3\cdot...\cdot a_n}