MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania National Olympiad
2022 Romania National Olympiad
P2
Romania NMO 2022 Grade 10 P2
Romania NMO 2022 Grade 10 P2
Source: Romania National Olympiad 2022
April 21, 2022
complex numbers
romania
inequalities
Problem Statement
Let
z
1
z_1
z
1
and
z
2
z_2
z
2
be complex numbers. Prove that
∣
z
1
+
z
2
∣
+
∣
z
1
−
z
2
∣
⩽
∣
z
1
∣
+
∣
z
2
∣
+
max
{
∣
z
1
∣
,
∣
z
2
∣
}
.
|z_1+z_2|+|z_1-z_2|\leqslant |z_1|+|z_2|+\max\{|z_1|,|z_2|\}.
∣
z
1
+
z
2
∣
+
∣
z
1
−
z
2
∣
⩽
∣
z
1
∣
+
∣
z
2
∣
+
max
{
∣
z
1
∣
,
∣
z
2
∣
}
.
Vlad Cerbu and Sorin Rădulescu
Back to Problems
View on AoPS