For every real number x, let ⌊x⌋ denote the greatest integer not exceeding x, and let f(x)=⌊x⌋(2014x−⌊x⌋−1). The set of all numbers x such that 1≤x<2014 and f(x)≤1 is a union of disjoint intervals. What is the sum of the lengths of those intervals?<spanclass=′latex−bold′>(A)</span>1<spanclass=′latex−bold′>(B)</span>log2014log2015<spanclass=′latex−bold′>(C)</span>log2013log2014<spanclass=′latex−bold′>(D)</span>20132014<spanclass=′latex−bold′>(E)</span>201420141