MathDB
Putnam 1953 B7

Source: Putnam 1953

July 16, 2022
Putnamirrational numberexpansion

Problem Statement

Let w(0,1)w\in (0,1) be an irrational number. Prove that ww has a unique convergent expansion of the form w=1p01p0p1+1p0p1p21p0p1p2p3+,w= \frac{1}{p_0} - \frac{1}{p_0 p_1 } + \frac{1}{ p_0 p_1 p_2 } - \frac{1}{p_0 p_1 p_2 p_3 } +\ldots, where 1p0<p1<p2<1\leq p_0 < p_1 < p_2 <\ldots are integers. If w=12,w= \frac{1}{\sqrt{2}}, find p0,p1,p2.p_0 , p_1 , p_2.