MathDB
sum a^{2014}/(1 + 2 bc) >=3/ (ab+bc+ca) for a,b,c<0 with abc = 1

Source: 2015 Latvia BW TST P12

December 16, 2022
algebrainequalities

Problem Statement

For real positive numbers a,b,ca, b, c, the equality abc=1abc = 1 holds. Prove that a20141+2bc+b20141+2ac+c20141+2ab3ab+bc+ca.\frac{a^{2014}}{1 + 2 bc}+\frac{b^{2014}}{1 + 2ac}+\frac{c^{2014}}{1 + 2ab} \ge \frac{3}{ab+bc+ca}.