MathDB
1/x+1/y=1/n

Source: Argentina 1995 OMA L3 p2

May 13, 2024
number theoryDiophantine equationdiophantine

Problem Statement

For each positive integer nn let p(n)p(n) be the number of ordered pairs (x,y)(x,y) of positive integers such that1x+1y=1n.\dfrac{1}{x}+\dfrac{1}{y} =\dfrac{1}{n}.For example, for n=2n=2 the pairs are (3,6),(4,4),(6,3)(3,6),(4,4),(6,3). Therefore p(2)=3p(2)=3. a) Determine p(n)p(n) for all nn and calculate p(1995)p(1995). b) Determine all pairs nn such that p(n)=3p(n)=3.