MathDB
2016-2017 Fall OMO Problem 18

Source:

November 16, 2016
Online Math Open

Problem Statement

Find the smallest positive integer kk such that there exist positive integers M,O>1M,O>1 satisfying (OMO)k=(OM)(NOM)(NOM)(NOM)2016 (NOM)s, (O\cdot M\cdot O)^k=(O\cdot M)\cdot \underbrace{(N\cdot O\cdot M)\cdot (N\cdot O\cdot M)\cdot \ldots \cdot (N\cdot O\cdot M)}_{2016\ (N\cdot O\cdot M)\text{s}}, where N=OMN=O^M.
Proposed by James Lin and Yannick Yao