MathDB
Putnam 2012 A5

Source:

December 3, 2012
Putnamvectorlinear algebramatrixalgebrafunctiondomain

Problem Statement

Let Fp\mathbb{F}_p denote the field of integers modulo a prime p,p, and let nn be a positive integer. Let vv be a fixed vector in Fpn,\mathbb{F}_p^n, let MM be an n×nn\times n matrix with entries in Fp,\mathbb{F}_p, and define G:FpnFpnG:\mathbb{F}_p^n\to \mathbb{F}_p^n by G(x)=v+Mx.G(x)=v+Mx. Let G(k)G^{(k)} denote the kk-fold composition of GG with itself, that is, G(1)(x)=G(x)G^{(1)}(x)=G(x) and G(k+1)(x)=G(G(k)(x)).G^{(k+1)}(x)=G(G^{(k)}(x)). Determine all pairs p,np,n for which there exist vv and MM such that the pnp^n vectors G(k)(0),G^{(k)}(0), k=1,2,,pnk=1,2,\dots,p^n are distinct.